Вариант 1. При анализирующем скрещивании тригетерозиготы получено потомство: F1: 126 - AaBbCc, 10 - AaBbcc, 64 - AabbCc, 62 - Aabbcc, 68 aaBbCc, 70 - aaBbcc, 14 - aabbCc, 133 - aabbcc

Проведите генетический анализ результатов анализирующего скрещивания, Определите:

- 1. Тип наследования
- 2. Карту исследуемого участка хромосомы, частоту кроссинговера между генами
 - 3. Расстояние между генами

Содержание верного ответа:

Решение: рецессивная особь всегда будет давать наметы одного вида авс, отсюда можно найти генотипы F1 в гаплоидном виде:

133 - abc

Анализ сцепления генов А и В:

AB - 136 (126+10)

Ab - 126 (64+62)

aB - 138 (68+70)

аь - 147 (14+133) всего - 547

Т.К. получены примерно равные доли генотипов, то можно говорить о независимом наследовании генов

2. анализ сцепления генов А и С

AC - 190

Ac - 72

aC-82

ас - 203 всего -547

Однако, частота встречаемости гамет различная, следовательно, гены

А и С наследуются сцепленно.

Некроссоверные гаметы

AC - 190

ac - 203

кроссоверные гаметы

Ac - 72

aC-82

AC % кроссинговера $(72+82) / 547 \times 100 = 28,1\%$

Генотип A C

c

3. Анализируем наследование пары генов В и С.

BC - 194

Bc - 80

BC - 78

Всего - 547 BC - 190

по распределению гамет, гены наследуются сцепленно, отсюда

Некроссоверные

BC - 194

BC - 190
Кроссоверные
Bc - 80
BC - 78
BC % кроссинговера $(80+78)/547 \times 100\% = 28,9\%$
Генотип В С
<u>B C</u>
Таким образом, гены А и В сцеплены с геном С, следовательно предположение о
независимом наследовании генов А и В оказалось ошибочным.
Для уточнения наследования генов А и В проведем анализ из сцепленного
наследования
Некроссоверные
AB – 136
ab - 147
Кроссоверные
Ab-126
аВ - 138 всего -547
AB % кроссинговера $(126+138)/547 \times 100\% = 48,3\%$.
Т.к. % кроссинговера близок к 50%, это дает картину статистически неотличимую о
независимого наследования
Генотип А В
<u>А в</u>
2. Карта исследуемого участка хромосомы:
A 28,1 C 28,9 B
$\overline{AB} = \overline{AC} + \overline{CB} = 28,1 + 28,9 = 57\%$ $\neq 48,3$, т.к. между генами возможен двойной
кроссинговер
ABc - 10
abC - 14
% двойного кроссинговера $(10+14)/547 \times 100\% = 4,4\%$.
Отсюда $AB = 48,3\% + 2X 4,4\% = 57\%$
Ответ.
1. Сцепленное наследование с двойным кроссинговером.
2. Карта исследуемого участка хромосомы:
A28,1C28,9B Частота кроссинговера AC – 28,1%; CB- 28,9%, AB – 48, 3%
3. Расстояние между генами AC – 28,1 M; CB – 28,9M; AB -57M

Вариант 2. Растение кукурузы, гетерозиготное по трем генам, скрещено с растением, гомозиготным по трем рецессивным аллелям этих генов. В потомстве наблюдалось следующее расщепление по фенотипу:

```
ABD - 3200
```

abd - 3050

Abd - 800

aBD - 540

AbD - 90

aBd - 101

abD - 830

Abd - 451

Всего: 9062

Определите:

- 1. расстояние между генами,
- 2. порядок расположения их в хромосоме,
- 3. генотип гетерозиготного родителя.

Содержание верного ответа:

Решение. По условию задачи нельзя точно определить, как наследуются изучаемые гены: проявляют ли независимое наследование, наследуются ли сцеплено и если сцеплены, то является ли сцепление полным или идет кроссинговер и т. д.

Чтобы ответить на эти вопросы, необходимо определить расстояние между этими генами попарно.

Определим расстояние между генами А и В. Выпишем все возможные комбинации этих генов в гаметах и количество последних:

$$AB - 4000$$
; $Ab - 541$; $ab - 3880$; $aB - 641$

Видно, что гаметы образуются с разной вероятностью. Это свидетельствует о сцеплении генов. В расщеплении преобладают гаметы **AB и ab** типа, которые и являются гаметами родительского класса.

Гаметы же Ab и аB типа являются кроссоверными.

Следовательно, 9062 - 100 %

$$rf AB = 13 \%.$$

Расстояние между генами А В 13 морганид

Определяем расстояние между генами В и D:

$$BD - 3740$$
; $Bd - 901$; $bd - 3501$; $bD - 920$

Видно, что гаметы образуются с разной вероятностью. Это свидетельствует о сцеплении генов.

В расщеплении преобладают гаметы BD и bd, которые и являются гаметами родительского класса.

Гаметы Bd и bD являются кроссоверными.

Следовательно, 9062 - 100 %

rfBD = 20%

Расстояние между генами BD -20 морганид

Определяем расстояние между генами A и D:

В расщеплении преобладают гаметы AD и ad, которые являются гаметами родительского класса. Соответственно, гаметы Ad и aD являются кроссоверными.

Следовательно, 9062 - 100 %

rfAD = 29 %.

Расстояние между генами AD - 29 морганид

При построении генетической карты локализуют прежде всего те гены, которые наиболее удалены друг от друга, а затем располагают третий ген, учитывая частоты кроссинговера.

A 13 % B 20 % D 29 %

После построения генетической карты региона следует определить генотип тригетерозиготы по родительским комбинациям генов в расщеплении: это гаметы ABD и abd. Следовательно, генотип тригетерозиготы ABD//abd.

Как видно из генетической карты региона, в анализируемом нами случае не соблюдается принцип аддитивности расстояний: $29 \% \neq 20 \% + 13 \%$.

Это противоречие обусловлено тем, что при определении частоты кроссинговера между крайними генами нами дважды не учитывался двойной кроссинговер.

Гаметы с двойным кроссинговером будут двух типов: **AbD и aBd**.

$$9062 - 100 \%$$

 $90 + 101 - 2 \%$.
rf ABD = 2 %

Следовательно, двойной кроссинговер происходит с частотой 2 %:

Отсюда уточненное расстояние между двумя крайними генами A и D будет равно 29 $\% + (2 \times 2 \%) = 33 \%$

Ответ. 1. Генотип тригетерозиготы ABD//abd; rfAB = 13 %, rfBD = 20, rfAD = 33%.

2. Генетическая карта региона:

частота кроссинговера AB -13 %; BD -20%; AD 29 %

3. Расстояние между генами AB -13 M; BD-20M; AD 33 - M

Вариант 3. Гены A, B и C сцеплены и располагаются в хромосоме в указанном порядке. Гены наследуются с неполным сцеплением и двойным кроссинговером. При этом кроссинговер между генами A и B происходит с частотой 8 %, а между генами B и C-25 %. Определите:

- 1. расстояние между генами А и С
- 2. частоту кроссинговера между генами А С
- 3. сколько и каких гамет будет образовываться у тригетерозиготы Abc//aBC?

Содержание верного ответа:

Решение. В силу линейного расположения генов на хромосоме расстояние между генами A и C можно определить как сумму расстояний между генами A и B и генами B и C:

$$AC = AB + BC = 8 \% + 25 \% = 33 \%$$
.

Частота кроссинговера между генами А и С равна:

 $rfAC = (8 \% + 25 \%) - (2 \times двойной кроссинговер).$

Поскольку нам не известен коэффициент коинциденции, то частота теоретического двойного кроссинговера равна:

$$(0.08 \times 0.25) \times 100 = 2 \%$$
.

Отсюда rfAC = $(8 \% + 25 \%) - (2 \times 2 \%) = 29 \%$.

У тригетерозиготы с генотипом Abc//aBC будет образовываться восемь типов гамет.

Родительский класс гамет:

Abc aBC -некроссоверные

Реципрокные классы:

Кроссоверный класс гамет, возникающий в результате рекомбинации на участке АВ:

ABC abc

Кроссоверный класс гамет, возникающий в результате рекомбинации на участке ВС:

AbC aBc

Двойной кроссоверный класс гамет, возникающий в результате одновременной рекомбинации на участках АВ и ВС:

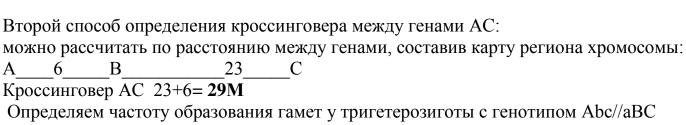
ABc abC

Определение частоты гамет в задачах такого рода необходимо начинать с расчета двойных кроссоверных гамет.

Двойной кроссинговер между генами A и C происходит с частотой 2 %, то гаметы с двойным кроссинговером типа ABc и abC составляют 2 % от всего количества гамет, образующихся у данной особи.

Чтобы определить частоту гамет, которые образуются в результате одиночных обменов на участках между генами A и B или генами B и C, необходимо воспользоваться показателями rfAB и rfBC.

Так как частота кроссинговера между генами A и B является суммой частот одиночного кроссинговера между этими генами и двойного кроссинговера, и равна 8 %, то доля гамет типа ABC и abc равна:


$$(8 \% - 2 \%) = 6 \%$$

Каждая из этих гамет образуется с частотой по 3 %.

Следовательно доля гамет типа AbC и aBc равна

$$(25 \% - 2 \%) = 23 \%$$

Каждая гамета образуется с частотой 11,5 %.

Определяем частоту образования гамет у тригетерозиготы с генотипом Abc//aBC Гаметы родительского класса равна:

100 % - (6 % (частота образования гамет типа ABC и abc) + 23 % (частота образования гамет типов AbC и aBc) + 2 % (частота образования гамет с двойным кроссинговером) = 69 %.

100% - (6% + 23% + 2%) = 69%

Каждая из родительских гамет при этом образуется с частотой **34,5 %.** гаметы родительского класса Abc и aBC (частота появления – 69 %); гаметы кроссоверного класса ABC и abc, которые возникают в результате рекомбинации между генами A и B (частота появления – 6 %); гаметы кроссоверного класса AbC и aBc, которые возникают в результате рекомбинации между генами B и C (частота появления – 23 %); гаметы с двойным кроссинговером ABc и abC (частота появления – 2 %).

Ответ. 1. Расстояние между генами А и С равно 33 морганиды;

- **2.** кроссинговер AC = 29 %.
- 3. У тригетерозиготы с генотипом Abc//аBC будет образовываться восемь типов гамет:

гаметы родительского класса Abc и aBC (частота появления – 69 %); гаметы кроссоверного класса ABC и abc, которые возникают в результате рекомбинации между генами A и B (частота появления – 6 %); гаметы кроссоверного класса AbC и aBc, которые возникают в результате рекомбинации между генами B и C (частота появления – 23 %); гаметы с двойным кроссинговером ABc и abC (частота появления – 2 %).

Вариант 4.

Гомозиготное стелющееся растение гороха с окрашенными цветками скрещивается с гомозиготным кустистым растением с белыми цветками. В F_2 получилось следующее расщепление:

- 20 стелющихся с белыми цветками
- 128 стелющихся с окрашенными цветками
- 30 кустистых с белыми цветками
- 22 кустистых с окрашенными цветками
- 1. Сделайте генетический анализ полученных результатов,
- 2. Определите генотипы родительских растений,
- 3. Определите генотипы и фенотипы растений F₁

Содержание верного ответа:

Решение:

1. Находим сколько всего растений в F_2

20+128+30+22=200 растений

Так как генотипы и фенотипы F_1 неизвестны, то решение задачи следует начинать с анализа признака формы стебля

P: C x K

 F_1 - ?

 F_2 : 148C; 52 К общее количество = 200

Допускаем моногенное отличие

200:4 = 50

148:50 = 3

52:50=1

Отсюда стелющиеся стебли доминантный признак А,

Кустистые стебли –рецессивный признак а

Следовательно, генотипы F_1 Aa, что возможно при скрещивании гомозигот. По признаку формы стебля:

P: AA x aa

G A a

F₁: Aa

G A; a A; a

F₂ AA 2Aa aa

Анализируем признак окраски цветков по фенотипам F_2

150 – окрашенные

50 белые

150:50=3:1

Скрещивание по признаку окраски цветков

Р: ВВ х вв

G B B

F₁: B_B

G B; B B; B

F₂ BB 2BB BB

3. Анализируем сцепление генов

При независимом наследовании расщепление 9:3:3:1

200:16=12,5 такое количество должно быть белых кустистых растений. По условию задачи в F_2 число растений с таким фенотипом равно 30

Следовательно, гены сцеплены и проходит кроссинговер

гаметы		некроссоверные		кроссоверные	
		AB	ав	Ав	aB
некроссоверные	AB	AABB	АаВв	ААВв	AaBB
	ав	АаВв	аавв	Аавв	ааВв
кроссоверные	Ав	ААВв	Аавв	ААвв	АаВв
	aB				

Находим долю генотипов рецессивных особей: 30 : 20 =0,15.

Частота образования гамет **ав** равна $\sqrt{0.15} = 0.387 = 38.7\%$

Следовательно, доля других некроссоверных гамет АВ также 38,7%.

Находим долю кроссоверных гамет

$$100\% - (38,7 \text{ x2}) = 22,6\%$$

Ответ:

- 1.Признаки наследуются по принципу полного доминирования с неполным сцеплением
- 2. Частота образования некроссоверных гамет ав и АВ по 38,7%, частота образования кроссоверных гамет Ав и аВ по 11,3%. Расстояние между генами 22,6 М.
- 3. Генотипы родительских растений ААВВ, аавв