Задача № 1 Вариант № 1 (25 баллов)

При проведении электролиза 412 г 20%-ного раствора хлорида кальция процесс прекратили, когда на катоде выделилось 4,48 л газа (н.у.). Из полученного раствора отобрали порцию массой 68,02 г. Вычислите массу 15%-ного раствора сульфата меди (II), необходимого для полного осаждения гидроксид-ионов из отобранной порции раствора.

	Решение
1	Записываем уравнение электролиза водного раствора хлорида кальция:
	$CaCl_2 + 2H_2O \rightarrow (электролиз) H_2 + Cl_2 + Ca(OH)_2$
2	Находим массу и количество вещества исходного хлорида кальция:
	$m(\text{CaCl}_2)_{\text{HCX}} = m_{\text{HCX,D-pa}} \cdot \omega(\text{CaCl}_2) = 412 \cdot 0,20 = 82,4 \ \varepsilon;$
	$n(\text{CaCl}_2)_{\text{исх}} = m(\text{CaCl}_2)_{\text{исх}} / M(\text{CaCl}_2) = 82,4 / 111 = 0,74$ моль.
3	Находим количество вещества выделившегося на катоде водорода: $n(H_2)$
	$=V(H_2) / V_{\scriptscriptstyle M} = 4{,}48 / 22{,}4 = 0{,}2$ моль.
4	Тогда количество образовавшегося Са(ОН)2 равно:
	$n(Ca(OH)_2) = n(H_2) = 0,2$ моль;
5	Находим массу полученного после электролиза раствора:
	$m_{\text{кон.p-pa}} = m_{\text{исх.p-pa}} - m(H_2) - m(Cl_2);$
	$m(H_2) = n(H_2) \cdot M(H_2) = 0.2 \cdot 2 = 0.4 \ \varepsilon;$
	$n(Cl_2) = n(H_2) = 0,2$ моль;
	$m(Cl_2) = n(Cl_2) \cdot M(Cl_2) = 0, 2 \cdot 71 = 14, 2 \ \varepsilon;$
	$m_{\text{кон.p-pa}} = 412 - 0.4 - 14.2 = 397.4 \ \epsilon.$
6	Находим $n(Ca(OH)_2)$ в порции массой 68,02 г:
	$n(\text{Ca}(\text{OH})_2)_{\text{порц}} = m_{\text{порц p-pa}} \cdot n(\text{Ca}(\text{OH})_2) / m_{\text{кон.p-pa}} =$
	$= 68,02 \cdot 0,2/397,4 = 0,034$ моль.
7	По уравнению реакции $Ca(OH)_2 + CuSO_4 \rightarrow Cu(OH)_2 + CaSO_4$ найдем
	количество и массу CuSO ₄ :
	$n(CuSO_4) = n(Ca(OH)_2)_{порц} = 0,034 $ моль;
	$m(CuSO_4) = n(CuSO_4) \cdot M(CuSO_4) = 0.034 \cdot 160 = 5.44 \ z$.
8	Находим массу раствора CuSO ₄ :
	$m_{\text{p-pa}}(\text{CuSO}_4) = m(\text{CuSO}_4) / \omega(\text{CuSO}_4) = 5,44 / 0,15 = 36,27 \ \epsilon.$
	<u>Otbet</u> : $m_{p-pa}(CuSO_4) = 36,27 \ \mathcal{E}$.

Задача № 1 Вариант № 2 (25 баллов)

При проведении электролиза 412 г 20%-ного раствора хлорида бария процесс прекратили, когда на катоде выделилось 4,48 л газа (н.у.). Из полученного раствора отобрали порцию массой 68,02 г. Вычислите массу 15%-ного раствора сульфата меди (II), необходимого для полного осаждения гидроксид-ионов из отобранной порции раствора.

	Решение
1	Записываем уравнение электролиза водного раствора хлорида бария:
	$BaCl_2 + 2H_2O \rightarrow (электролиз) H_2 + Cl_2 + Ba(OH)_2$
2	Находим массу и количество вещества исходного хлорида бария:
	$m(BaCl_2)_{ucx} = m(BaCl_2)_{p-pa} \cdot \omega(BaCl_2) = 412 \cdot 0,20 = 82,4 \ z$
	$n(\text{BaCl}_2)_{\text{исх}} = m(\text{BaCl}_2)_{\text{исх}} / M(\text{BaCl}_2) = 82,4 / 208 = 0,4$ моль.
3	Находим количество вещества выделившегося на катоде водорода: $n(H_2)$
	$=V(H_2) / V_{\scriptscriptstyle M} = 4,48 / 22,4 = 0,2$ моль.
4	Тогда количество образовавшегося Ва(ОН) ₂ равно:
	$n(Ba(OH)_2) = n(H_2) = 0,2$ моль;
5	Находим массу полученного после электролиза раствора:
	$m_{\text{кон.p-pa}} = m_{\text{исх.p-pa}} - m(H_2) - m(Cl_2);$
	$m(H_2) = n(H_2) \cdot M(H_2) = 0, 2 \cdot 2 = 0, 4 \ \varepsilon;$
	$n(Cl_2) = n(H_2) = 0.2$ моль;
	$m(Cl_2) = n(Cl_2) \cdot M(Cl_2) = 0.271 = 14.2 c;$
	$m_{\text{кон.p-pa}} = 412 - 0.4 - 14.2 = 397.4 \ \varepsilon.$
6	Находим $n(Ba(OH)_2)$ в порции массой 68,02 г:
	$m(Ba(OH)_2)_{\text{порц}} = m_{\text{порц p-pa}} \cdot n(Ba(OH)_2) / m_{\text{кон.p-pa}} =$
	$68,02\ 0,2\ /\ 397,4=0,034$ моль.
7	По уравнению реакции $Ba(OH)_2 + CuSO_4 \rightarrow Cu(OH)_2 + BaSO_4$ найдем
	количество и массу CuSO ₄ :
	$n(\text{CuSO}_4) = n(\text{Ba}(\text{OH})_2)_{\text{порц}} = 0.034 \text{ моль};$
	$m(CuSO_4) = n(CuSO_4) \cdot M(CuSO_4) = 0.034 \cdot 160 = 5.44 \ z$.
8	Находим массу раствора CuSO ₄ :
	$m_{\text{p-pa}}(\text{CuSO}_4) = m(\text{CuSO}_4) / \omega(\text{CuSO}_4) = 5,44 / 0,15 = 36,27 \ \epsilon.$
	Otbet: $m_{\text{p-pa}}(\text{CuSO}_4) = 36,27 \ \epsilon$.

Задача № 1 Вариант № 3 (25 баллов)

При проведении электролиза 206 г 20%-ного раствора хлорида кальция процесс прекратили, когда на катоде выделилось 2,24 л газа (н.у.). Из полученного раствора отобрали порцию массой 34,01 г. Вычислите массу 15%-ного раствора сульфата меди (II), необходимого для полного осаждения гидроксид-ионов из отобранной порции раствора.

	Решение
1	Записываем уравнение электролиза водного раствора хлорида кальция:
	$CaCl_2 + 2H_2O \rightarrow (электролиз) H_2 + Cl_2 + Ca(OH)_2$
2	Находим массу и количество вещества исходного хлорида кальция:
	$m(\text{CaCl}_2)_{\text{ucx}} = m_{\text{ucx.p-pa}} \cdot \omega(\text{CaCl}_2) = 206 \cdot 0, 20 = 41, 2 z;$
	$n(CaCl_2)_{HCX} = m(CaCl_2)_{HCX} / M(CaCl_2) = 41,2 / 111 = 0,37$ моль.
3	Находим количество вещества выделившегося на катоде водорода: $n(H_2)$ =
	$V({ m H}_2)$ / $V_{\scriptscriptstyle M}\!\!=2,\!24$ / $22,\!4=0,\!1$ моль.
4	Тогда количество образовавшегося Са(ОН)2 равно:
	$n(Ca(OH)_2) = n(H_2) = 0,1$ моль;
5	Находим массу полученного после электролиза раствора:
	$m_{\text{кон.p-pa}} = m_{\text{исх.p-pa}} - m(H_2) - m(Cl_2);$
	$m(H_2) = n(H_2) \cdot M(H_2) = 0, 1 \cdot 2 = 0, 2 \ \varepsilon;$
	$n(Cl_2) = n(H_2) = 0,1$ моль;
	$m(Cl_2) = n(Cl_2) \cdot M(Cl_2) = 0, 1 \cdot 71 = 7, 1 \ \varepsilon;$
	$m_{\text{koh.p-pa}} = 206 - 0.2 - 7.1 = 198.7 \ \varepsilon.$
6	Находим $n(Ca(OH)_2)$ в порции массой 34,01 $ε$:
	$m(Ca(OH)_2)_{\text{порц}} = m_{\text{порц p-pa}} \cdot n(Ca(OH)_2) / m_{\text{кон.p-pa}} =$
	$34,01\ 0,2\ /\ 198,7=0,017$ моль.
7	По уравнению реакции $Ca(OH)_2 + CuSO_4 \rightarrow Cu(OH)_2 + CaSO_4$ найдем
	количество и массу CuSO ₄ :
	$n(\text{CuSO}_4) = n(\text{Ca}(\text{OH})_2)_{\text{порц}} = 0.017 \text{ моль};$
	$m(CuSO_4) = n(CuSO_4) \cdot M(CuSO_4) = 0.017 \cdot 160 = 2.72 \ z$.
8	Находим массу раствора CuSO ₄ :
	$m_{\text{p-pa}}(\text{CuSO}_4) = m(\text{CuSO}_4) / \omega(\text{CuSO}_4) = 2,72 / 0,15 = 18,13 \ \epsilon.$
	Otber: $m_{\text{p-pa}}(\text{CuSO}_4) = 18{,}13 \ \epsilon$.

Задача № 1 Вариант № 4 (25 баллов)

При проведении электролиза 206 г 20%-ного раствора хлорида бария процесс прекратили, когда на катоде выделилось 2,24 л газа (н.у.). Из полученного раствора отобрали порцию массой 34,01 г. Вычислите массу 15%-ного раствора сульфата меди (II), необходимого для полного осаждения гидроксид-ионов из отобранной порции раствора.

	Решение
1	Записываем уравнение электролиза водного раствора хлорида бария:
	$BaCl_2 + 2H_2O \rightarrow (электролиз) H_2 + Cl_2 + Ba(OH)_2$
2	Находим массу и количество вещества исходного хлорида бария:
	$m(BaCl_2)_{ucx} = m(BaCl_2)_{p-pa} \cdot \omega(BaCl_2) = 206 \cdot 0,20 = 42,2 \ \varepsilon$
	$n(\text{BaCl}_2)_{\text{исх}} = m(\text{BaCl}_2)_{\text{исх}} / M(\text{BaCl}_2) = 42,2 / 208 = 0,2$ моль.
3	Находим количество вещества выделившегося на катоде водорода: $n(H_2)$ =
	$V(H_2) / V_{\scriptscriptstyle M} = 2,24 / 22,4 = 0,1$ моль.
4	Тогда количество образовавшегося Ва(ОН)2 равно:
	$n(Ba(OH)_2) = n(H_2) = 0,1$ моль;
5	Находим массу полученного после электролиза раствора:
	$m_{\text{кон.p-pa}} = m_{\text{исх.p-pa}} - m(H_2) - m(Cl_2);$
	$m(H_2) = n(H_2) \cdot M(H_2) = 0, 1 \cdot 2 = 0, 2 \ \varepsilon;$
	$n(Cl_2) = n(H_2) = 0,1$ моль;
	$m(Cl_2) = n(Cl_2) \cdot M(Cl_2) = 0, 1 \cdot 71 = 7, 1 z;$
	$m_{\text{кон.p-pa}} = 206 - 0.2 - 7.1 = 198.7 \text{ z.}$
6	Находим $n(Ba(OH)_2)$ в порции массой 34,01 ϵ :
	$m(Ba(OH)_2)_{\text{порц}} = m_{\text{порц p-pa}} \cdot n(Ba(OH)_2) / m_{\text{кон.p-pa}} =$
	34,01.0,2 / 198,7 = 0,017 моль.
7	По уравнению реакции $Ba(OH)_2+ CuSO_4 \rightarrow Cu(OH)_2 + BaSO_4$ найдем
	количество и массу CuSO ₄ :
	$n(\text{CuSO}_4) = n(\text{Ba}(\text{OH})_2)_{\text{порц}} = 0.017 \text{ моль};$
	$m(\text{CuSO}_4) = n(\text{CuSO}_4) \cdot M(\text{CuSO}_4) = 0.01 \cdot 160 = 2.72 \text{?}$
8	Haxoдим массу paствораCuSO ₄ :
	$m_{\text{p-pa}}(\text{CuSO}_4) = m(\text{CuSO}_4) / \omega(\text{CuSO}_4) = 2.72 / 0.15 = 18.13 \text{ c.}$
	<u>Ответ</u> : m_{p-pa} (CuSO ₄) = 18,13 г.

Задача № 1 Вариант № 5 (25 баллов)

380 г насыщенного раствора хлорида бериллия (II), содержащего 72.8 г соли в 100 г воды, разлили по двум колбам. В первую колбу добавили избыток нитрата серебра. При этом выпало 172,2 г осадка. Во вторую колбу добавили 820 г 40% - ного раствора гидроксида натрия.

Вычислите массовую долю хлорида натрия в растворе, образовавшемся во второй колбе (с точностью до десятых). Напишите уравнения всех протекающих реакций.

тешение и критерии оценивания решения задачи 312 1.		
Элементы ответа	Решение	
Составлены	$BeCl2 + 2AgNO3 = 2AgCl \downarrow + Be(NO3)2(1)$	
уравнения реакций	BeCl2 + 4NaOH = Na2[Be(OH)4] + 2NaCl(2)	
Рассчитаны масса	$m_{p-pa}(BeCl_2) = m_{B-Ba} + m_{H2O} = 72,8 \ \Gamma + 100\Gamma = 172,8 \ \Gamma$	
раствора хлорида бериллия (II) и	172,8 г раствора содержит – 72,8 г BeCl ₂	
количество вещества	380 г раствора содержит – х г BeCl ₂	
	$x = 380 \ \Gamma \times 72.8 \ \Gamma / 172.8 = 160 \ \Gamma$	
	$M(BeCl_2) = 80$ г/моль	
	$n_{ m o 6 m}({ m BeCl_2})=m\ /\ M=160\ { m \Gamma}\ /\ 80\ { m \Gamma/moль}=2$ моль	
Рассчитаны	В первой колбе:	
количество реагента	M(AgCl) = 143,5 г/моль	
и осадка в первой	n (AgCl) = m / M = 172,2 г / 143,5 г/моль = 1,2 моль	
колбе	$n_1 (BeCl_2) = 1/2 n (AgCl) = 1,2 $ моль : $2 = 0,6 $ моль	
Рассчитаны	Во второй колбе:	
количество и масса	$n_2 (BeCl_2) = n_{oбщ} (BeCl_2) - n_1 (BeCl_2) =$	
реагента во второй	= 2 моль -0.6 моль $= 1.4$ моль	
колбе	$m_2(BeCl_2) = n \times M = 1,4$ моль $\times 80$ г/моль $= 112$ г	
	160 г (BeCl ₂) содержится в – 380 г раствора	
	112 г (BeCl ₂) содержится в – у г раствора	

	у = (112 г × 380 г)/ 160 г = 266 г раствора
Определено	$m_{\text{вещества}}(\text{NaOH}) = (820 \ \Gamma \times 40\%) \ / \ 100\% = 328 \ \Gamma$
количество щелочи	M (NaOH) = 40 г/моль
,	n (NaOH) = m / M = 328 г / 40 г / моль = 8,2 моль
	NaOH – в избытке,
	по уравнению (2) образуется комплексная соль
Рассчитаны	$n (NaCl) = 2 \times n_2 (BeCl_2) = 2 \times 1,4$ моль = 2,8 моль
количество и масса	M(NaCl) = 58, 5 г/моль
хлорида натрия	m (NaCl) = $n \times M = 2,8$ моль \times 58, 5 г/моль = 163,8 г
Рассчитана масса	m(конечного раствора) = m (p-ра BeCl2 во 2-й колбе)
конечного раствора	$+$ m (раствора NaOH) = $266 \Gamma + 820 \Gamma = 1086 \Gamma$
Рассчитана массовая	ω (NaCl) = (m (вещества NaCl) / m (конечного
доля хлорида натрия	раствора)) × 100% = (163,8 г/1086 г) × 100% =
в растворе,	=15,1%
образовавшемся во	
второй колбе	

Задача № 1 Вариант № 6 (25 баллов)

1095 г насыщенного раствора нитрата алюминия, содержащего 63,7 г соли в 100 г воды, разлили по двум колбам. В первую колбу добавили избыток фосфата калия. При этом выпало 170,8 г осадка. Во вторую колбу добавили 800 г 20% - ного раствора гидроксида натрия.

Вычислите массовую долю нитрата натрия в растворе, образовавшемся во второй колбе (с точностью до десятых). Напишите уравнения всех протекающих реакций.

Элементы ответа	Решение
Составлены	$Al(NO_3)_3 + K_3PO_4 = AlPO_4 \downarrow + 3KNO_3 (1)$
уравнения реакций	Al(NO3)3 + 4NaOH = Na[Al(OH)4] + 3NaNO3(2)
Danassa	(A1(NO.)) (2.7 - +1001(2.7
Рассчитаны масса	$m_{p-pa}(Al(NO_3)_3) = m_{B-Ba} + m_{H2O} = 63,7 \Gamma + 100\Gamma = =163,7$
раствора нитрата алюминия и	Γ
алюминия и количество вещества	163,7 г раствора содержит – 63,7 г Al(NO ₃) ₃
	1095 г раствора содержит – х г $Al(NO_3)_3$
	$x = 1095 \ \Gamma * 63,7 \ \Gamma / 163,7 = 426,1 \ \Gamma$
	$M (Al(NO_3)_3) = 213 \ г/моль$
	$n_{\text{общ}}(Al(NO_3)_3) = m \ / \ M = \ = 426,1 \ г \ / \ 213 \ г/$ моль=
	=2моль
Рассчитаны	В первой колбе:
количество реагента	$M(AlPO_4) = 122$ г/моль
и осадка в первой	n (AlPO ₄) = m / M = 170,8 г / 122 г/моль = 1,4 моль
колбе	n_1 ($Al(NO_3)_3$) = n ($AlPO4$) = 1,4 моль
Рассчитаны	Во второй колбе:
количество и масса	n_2 ($Al(NO_3)_3$) = $n_{oбщ}(Al(NO_3)_3)$ - n_1 ($Al(NO_3)_3$) =
реагента во второй	= 2 моль $-1,4$ моль $= 0,6$ моль
колбе	

	$m_2(Al(NO_3)_3) = n*M = 0,6$ моль*213 г/моль =127,8 г
	426,1 г (Al(NO ₃) ₃) содержится в – 1095 г раствора
	127,8 г (Al(NO ₃) ₃) содержится в – у г раствора
	$y = (127,8 \ \Gamma * 1095 \ \Gamma) / 426,1 \ \Gamma = 328,4 \ \Gamma$ раствора
Определено	$m_{\text{вещества}}(\text{NaOH}) = (800 \ \Gamma * 20\%) / 100\% = 160 \ \Gamma$
количество щелочи	M (NaOH) = 40 г/моль
	n (NaOH) = m / M = 160 г / 40 г / моль = 4 моль
	NaOH – в избытке,
	по уравнению (2) образуется комплексная соль
Рассчитаны	$n (NaNO_3) = 3* n_2 (Al(NO_3)_3) = 3*0,6 моль =$
количество и масса	= 1,8 моль
нитрата натрия	$M(NaNO_3) = 85 \Gamma/моль$
	m (NaNO ₃) = $n*M = 1,8$ моль * 85 г/моль = 153 г
Рассчитана масса	m(конечного раствора) = m (p-pa Al(NO3)3) во 2-й
конечного раствора	колбе) + m (раствора NaOH) = $328,4 \Gamma + 800 \Gamma =$
	=1128,4 г
D	
Рассчитана массовая	ω (NaNO ₃) = (m (вещества NaNO ₃) / m (конечного
доля нитрата натрия	раствора))* $100\% = (153 \Gamma/1128, 4 \Gamma) * 100\% = 13,6\%$
в растворе,	
образовавшемся во	
второй колбе	

Задача № 1 Вариант № 7 (25 баллов)

1897 г насыщенного раствора бромида цинка, содержащего 31,1 г соли в 100 г воды, разлили по двум колбам. В первую колбу добавили избыток нитрата серебра. При этом выпало 488,8 г осадка. Во вторую колбу добавили 784 г 40% - ного раствора гидроксида калия.

Вычислите массовую долю бромида калия в растворе, образовавшемся во второй колбе (с точностью до десятых). Напишите уравнения всех протекающих реакций.

гешение и критерии оценивания решения задачи № 1:		
Элементы ответа	Решение	
Составлены	$ZnBr_2 + 2AgNO_3 = 2AgBr_{\downarrow} + Zn(NO_3)_2$ (1)	
уравнения реакций	$ZnBr_2 + 4KOH = K_2[Zn(OH)_4] + 2KBr$ (2)	
Рассчитаны масса	$m_{p-pa}(ZnBr_2) = m_{B-Ba} + m_{H2O} = 31,1 \Gamma + 100 \Gamma =$	
раствора бромида	=131,1 г	
цинка и количество вещества	131,1 г раствора содержит – 31,1 г ZnBr ₂	
	1897 г раствора содержит – х г ZnBr ₂	
	$x = 1897 \ \Gamma \times 31,1 \ \Gamma / 131,1 = 450 \ \Gamma$	
	$M (ZnBr_2) = 225 \Gamma/моль$	
	$n_{ m o 6 m}(ZnBr_2)=m\ /\ M=450\ { m f}\ /\ 225\ { m г/моль}=2$ моль	
Рассчитаны	В первой колбе:	
количество реагента	M(AgBr) = 188 г/моль	
и осадка в первой	n (AgBr) = m / M = 488,8 г / 188 г/моль = 2,6 моль	
колбе	$n_1 (ZnBr_2) = 1/2 n(AgBr) = 1/2 \times 2,6 моль =$	
	=1,3 моль	
Рассчитаны	Во второй колбе:	
количество и масса	$n_{2}(ZnBr_{2}) = n_{o 6 III}(ZnBr_{2}) - n_{1}(ZnBr_{2}) =$	
реагента во второй	= 2 моль $-1,3$ моль $= 0,7$ моль	
колбе	$m_2(ZnBr_2) = n \times M = 0,7$ моль $\times 225$ г/моль $= 157,5$ г	
	450 г (ZnBr ₂) содержится в – 1897 г раствора	
	157,5 г (ZnBr ₂) содержится в – у г раствора	

	$y = (157,5 \ \Gamma \times 1897 \ \Gamma) / 450 \ \Gamma = 664 \ \Gamma$ раствора
Определено количество щелочи	$m_{\text{вещества}}(\text{KOH}) = (784 \ \Gamma \times 40\%) \ / \ 100\% = 313,6 \ \Gamma$ $M \ (\text{KOH}) = 56 \ \Gamma/\text{моль}$ $n \ (\text{KOH}) = m \ / \ M = 313,6 \ \Gamma \ / \ 56 \ \Gamma/$ моль $= 5,6$ моль $\text{KOH} - \text{в}$ избытке, по уравнению (2) образуется комплексная соль
Рассчитаны	$n (KBr) = 2 \times n_2 (ZnBr_2) = 2 \times 0.7 \text{ моль} =$
количество и масса	= 1,4 моль
бромида калия	M(KBr) = 119 г/моль
	m (KBr) = n×M = 1,4 моль × 119 г/моль = 166,6 г
Рассчитана масса	m(конечного раствора) = m (p-pa ZnBr ₂ во 2-й колбе)
конечного раствора	$+$ m (раствора КОН) = 664 $_{\Gamma}$ + 784 $_{\Gamma}$ =
	=1448 г
Рассчитана массовая	ω (KBr) = (m (вещества KBr) / m (конечного
доля бромида калия	раствора))×100% = ($166,6\Gamma/1448\ \Gamma$)×100% = 11,5%
в растворе,	
образовавшемся во	
второй колбе	

Задача № 1 Вариант № 8 (25 баллов)

1170 г насыщенного раствора нитрата хрома (III), содержащего 81 г соли в 100 г воды, разлили по двум колбам. В первую колбу добавили избыток фосфата натрия. При этом выпало 176,4 г осадка. Во вторую колбу добавили 1120 г 50% - ного раствора гидроксида калия.

Вычислите массовую долю нитрата калия в растворе, образовавшемся во второй колбе (с точностью до десятых). Напишите уравнения всех протекающих реакций.

тешение и критерии оценивания решения задачи ле т.		
Элементы ответа	Решение	
Составлены	$Cr(NO_3)_3 + Na_3PO_4 = CrPO_4 \downarrow + 3NaNO_3 $ (1)	
уравнения реакций	$Cr(NO_3)_3 + 6KOH = K_3[Cr(OH)_6]_+ 3KNO_3$ (2)	
	или $Cr(NO_3)_3 + 4KOH = K[Cr(OH)_4]_+ 3KNO_3$	
Рассчитаны масса	$m_{p-pa}(Cr(NO_3)_3) = m_{B-Ba} + m_{H2O} = 81 \Gamma + 100 \Gamma =$	
раствора нитрата	=181 г	
хрома (III) и количество вещества	181 г раствора содержит – 81 г Cr(NO ₃) ₃	
	1170 г раствора содержит – х г Cr(NO ₃) ₃	
	$x = 1170 \ \Gamma \times 81 \ \Gamma / 181\Gamma = 523,6 \ \Gamma$	
	$M (Cr(NO_3)_3) = 238 \ \Gamma/моль$	
	$n_{ m o 6 m} (Cr(NO_3)_3) = m / M = 523,6 \Gamma / 238 \Gamma / { m mode} =$	
	= 2,2 моль	
Рассчитаны	В первой колбе:	
количество реагента	$M(CrPO_4) = 147$ г/моль	
и осадка в первой	$n (CrPO_4) = m / M = 176,4 г / 147 г/моль = 1,2 моль$	
колбе	$n_1 (Cr(NO_3)_3) = n(CrPO_4) = 1,2$ моль	
Рассчитаны	Во второй колбе:	
количество и масса	$n_2(Cr(NO_3)_3) = n_{oбщ}(Cr(NO_3)_3) - n_1(Cr(NO_3)_3) =$	
реагента во второй	= 2,2 моль $- 1,2$ моль $= 1$ моль	
колбе	$m_2(Cr(NO_3)_3) = n \times M = 1$ моль $\times 238$ г/моль $= 238$ г	
	523,6 г (Cr(NO ₃) ₃) содержится в – 1170 г раствора	

	238 г (Cr(NO ₃) ₃) содержится в – у г раствора
	$y = (238 \ \ \Gamma \times 1170 \ \ \Gamma) \ / \ 523,6 \ \ \Gamma = 531,8 \ \ \Gamma$ раствора
Определено	$m_{\text{вещества}}(\text{KOH}) = (1120 \ \Gamma \times 50\%) / 100\% = 560 \ \Gamma$
количество щелочи	$M ext{ (KOH)} = 56 ext{ г/моль} $ $n ext{ (KOH)} = m ext{ / } M = 560 ext{ г / 56 г/ моль} = 10 моль}$
	КОН – в избытке,
	по уравнению (2) образуется комплексная соль
Рассчитаны	$n (KNO_3) = 3 \times n_2 (Cr(NO_3)_3) = 3 \times 1 $ моль =
количество и масса	= 3 моль
нитрата калия	$M(KNO_3) = 101 \ \Gamma/моль$
	$m (KNO_3) = n \times M = 3$ моль \times 101 г/моль $=$ 303 г
Рассчитана масса	m(конечного раствора) = m (p-pa Cr(NO3)3 во 2-й
конечного раствора	колбе) + m (раствора КОН) = 531,8 Γ + 1120 Γ =
	=1651,8 г
Рассчитана массовая	ω (KNO ₃) = (m (вещества KNO ₃) / m (конечного
доля нитрата калия	раствора)) $\times 100\% = (303/1651,8 \ \Gamma) \times 100\% = 18,3\%$
в растворе,	
образовавшемся во	
второй колбе	